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Abstract
Computing the polar decomposition and the related matrix sign function has been a well-studied problem in numerical analysis for
decades. Recently, it has emerged as an important subroutine within the Muon algorithm for training deep neural networks. However, the
requirements of this application differ sharply from classical settings: deep learning demands GPU-friendly algorithms that prioritize high
throughput over high precision. We introduce Polar Express, a new method for computing the polar decomposition. Like Newton–Schulz
and other classical polynomial methods, our approach uses only matrix-matrix multiplications, making it very efficient on GPUs. Inspired
by earlier work of Chen \& Chow and Nakatsukasa \& Freund,  Polar Express adapts the update rule at each iteration by solving a
minimax optimization problem. We prove that this strategy minimizes error in a worst-case sense, allowing Polar Express to converge as
rapidly as possible both in the early iterations and asymptotically. We also address finite-precision issues, making it practical to use in bf
loat16 . When integrated into Muon, our method yields consistent improvements in validation loss for a GPT-2 model on one to ten billion
tokens from the FineWeb dataset, outperforming recent alternatives across a range of learning rates.

Disclaimer

This report is AI-GENERATED using Large Language Models and WisPaper (a scholar search engine). It analyzes academic papers' tasks and contributions against
retrieved prior work. While this system identifies POTENTIAL overlaps and novel directions, ITS COVERAGE IS NOT EXHAUSTIVE AND JUDGMENTS ARE
APPROXIMATE. These results are intended to assist human reviewers and SHOULD NOT be relied upon as a definitive verdict on novelty.

Note that some papers exist in multiple, slightly different versions (e.g.,  with different titles or URLs). The system may retrieve several versions of the same
underlying work. The current automated pipeline does not reliably align or distinguish these cases, so human reviewers will need to disambiguate them manually.

If you have any questions, please contact: mingzhang23@m.fudan.edu.cn

Core Task Landscape
This paper addresses: Computing the Polar Decomposition for Neural Network Optimization

A total of 19 papers were analyzed and organized into a taxonomy with 15 categories.

Taxonomy Overview
The research landscape has been organized into the following main categories:

Polar Decomposition Algorithms and Theory

Neural Network Optimization with Orthogonality Constraints

Statistical Estimation and Structured Optimization

Spatial Transformation and Equivariance

SAR Polarimetry and Remote Sensing Applications

Complete Taxonomy Tree
Computing the Polar Decomposition for Neural Network Optimization Survey Taxonomy

Polar Decomposition Algorithms and Theory

Classical Numerical Methods (1 papers)

[5] Computing the polar decompositionâ��with applications (j., 1986) View paper

Adaptive Minimax Optimization Methods ★ (1 papers)

[0] The Polar Express: Optimal Matrix Sign Methods and their Application to the Muon Algorithm (Anon et al., 2026) View paper

Continuous-Time and Discrete-Time Neural Network Models (1 papers)

[17] Time-Varying Polar Decomposition by Continuous-Time Model and Discrete-Time Algorithm of Zeroing Neural Network Using
Zhang Time Discretization (ZTD) (Zanyu Tang, 2021) View paper

Theoretical Foundations and Applications (3 papers)

[8] On a Neural Implementation of Brenier's Polar Factorization (Vesseron, 2024) View paper

[18] Applied Linear Algebra and Big Data Course Book (Kabir K. Gandhi, 2019) View paper

[19] The Neural Solids; For optimization problems (Giansalvo Cirrincione, 2001) View paper

Neural Network Optimization with Orthogonality Constraints

Low-Rank Adaptation and Fine-Tuning (1 papers)

[2] PoLAR: Polar-Decomposed Low-Rank Adapter Representation (Zhang Liang, 2025) View paper

Orthogonal Training Frameworks (1 papers)

[7] TAOTF: A Two-stage Approximately Orthogonal Training Framework in Deep Neural Networks (Taoyong Cui, 2022) View paper

Graph Neural Network Orthogonalization (2 papers)

[1] Simple orthogonal graph representation learning (student abstract) (Cui, 2024) View paper

[6] Expressive 1-lipschitz neural networks for robust multiple graph learning against adversarial attacks (Zhao Xin, 2021)  View
paper

Matrix-Gradient Preconditioning (1 papers)

[10] PolarGrad: A Class of Matrix-Gradient Optimizers from a Unifying Preconditioning Perspective (Lau, 2025) View paper

Statistical Estimation and Structured Optimization

Group Synchronization (1 papers)

[11] Optimal orthogonal group synchronization and rotation group synchronization (Gao Chao, 2022) View paper

Atomic Decomposition via Polar Alignment (1 papers)

[3] Atomic decomposition via polar alignment: The geometry of structured optimization (Zhenan Fan, 2020) View paper

Quantum Singular Value Decomposition (1 papers)

• 

• 

• 

• 

• 

• 

• 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

• 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

◦ 

• 

◦ 

◦ 

◦ 

◦ 

◦ 

https://opennovelty.org/
https://openreview.net/pdf?id=yRtgZ1K8hO
mailto:mingzhang23@m.fudan.edu.cn
https://epubs.siam.org/doi/abs/10.1137/0907079
https://openreview.net/pdf?id=yRtgZ1K8hO
https://doi.org/10.1109/icicip53388.2021.9642222
http://arxiv.org/abs/2403.03071
https://dash.harvard.edu/entities/publication/055953f8-6a4b-4192-bef1-c9919931c58e
https://link.springer.com/article/10.1023/A:1009660910503
https://arxiv.org/abs/2506.03133
https://doi.org/10.48550/arxiv.2211.13902
https://ojs.aaai.org/index.php/AAAI/article/view/30430
http://proceedings.mlr.press/v139/zhao21e.html
http://proceedings.mlr.press/v139/zhao21e.html
http://arxiv.org/abs/2505.21799
https://doi.org/10.1093/imaiai/iaac022
https://www.nowpublishers.com/article/Details/OPT-028


[4] Variational quantum singular value decomposition (Wang Xin, 2021) View paper

Spatial Transformation and Equivariance (1 papers)

[9] Polar transformer networks (Carlos Esteves, 2017) View paper

SAR Polarimetry and Remote Sensing Applications

Crop and Land Cover Mapping (3 papers)

[12] Crop Type Mapping Based on Polarization Information of Time Series Sentinel-1 Images Using Patch-Based Neural Network
(Yuying Liu, 2023) View paper

[14] Water-Body Detection From Spaceborne SAR Images With DBO-CNN (Qi-ming Yuan, 2023) View paper

[16] Characterizing Ancient Channel of the Yellow River From Spaceborne SAR: Case Study of Chinese Gaofen-3 Satellite (Ning Li,
2021) View paper

Target Detection and Identification (1 papers)

[13] Anti-Corner Reflector Array Method Based on Pauli Polarization Decomposition and BP Neural Network (Liang Ziyao, 2021) Vi
ew paper

Medical Polarimetry Imaging (1 papers)

[15] Detecting cervical intraepithelial neoplasia using polarimetry parameters and multichannel convolutional neural network (Yang
Dong, 2021) View paper

Narrative
Core task: Computing the polar decomposition for neural network optimization. The field encompasses several distinct branches that
reflect both foundational algorithmic concerns and diverse application domains. At its center, Polar Decomposition Algorithms and Theory
addresses  the  numerical  methods  and  convergence  guarantees  needed  to  factorize  matrices  into  orthogonal  and  positive-definite
components—a classical problem dating back to foundational work such as Computing Polar Decomposition[5]. Adjacent to this, Neural
Network  Optimization  with  Orthogonality  Constraints  explores  how enforcing  or  learning  orthogonal  weight  matrices  can  improve
training stability and generalization, with recent efforts like Simple Orthogonal Graph[1] and PoLAR[2] demonstrating practical benefits.
A third  branch,  Statistical  Estimation and Structured Optimization,  examines  problems such as  group synchronization and optimal
transport where polar-like factorizations arise naturally. Meanwhile, Spatial Transformation and Equivariance investigates geometric
transformations in vision tasks, and SAR Polarimetry and Remote Sensing Applications focuses on radar signal processing for earth
observation, illustrating the breadth of contexts in which polar decompositions prove useful.

Within  the  algorithmic  core,  a  particularly  active  line  of  work  concerns  adaptive  minimax  optimization  methods  that  balance
computational efficiency with numerical stability. Polar Express[0] sits squarely in this space, proposing a novel optimizer that leverages
polar decomposition to handle non-convex landscapes more robustly. Its emphasis on adaptive step-size rules and minimax formulations
contrasts with earlier approaches like Polar Alignment[3], which focused on aligning learned representations through polar factorization,
and PolarGrad[10], which integrates polar updates directly into gradient descent. These neighboring works share a common interest in
exploiting orthogonal structure, yet they differ in whether the decomposition is computed explicitly at each iteration or approximated via
cheaper surrogates. Open questions remain about the trade-offs between exact polar updates and scalable heuristics, as well as how
these methods generalize across different network architectures and loss surfaces.

Related Works in Same Category
No sibling papers were found in the same taxonomy leaf. A taxonomy-subtopic-level comparison will be produced instead.

Taxonomy-Level Summary
The  original  leaf  on  Adaptive  Minimax  Optimization  Methods  focuses  on  algorithms  that  dynamically  adjust  update  rules  through
minimax optimization to achieve optimal  convergence rates in neural  network training.  The sibling subtopics cover complementary
aspects:  Classical  Numerical  Methods  addresses  traditional  iterative  schemes  like  Newton-based  approaches,  Continuous-Time and
Discrete-Time Neural  Network Models  handles  time-varying polar  decomposition through zeroing neural  networks,  and Theoretical
Foundations explores the mathematical underpinnings and generalizations of polar decomposition itself.

Similarities: - All subtopics relate to computing polar decomposition, which is central to neural network optimization - Each category
addresses convergence and computational efficiency, though through different mechanisms - All exclude overlapping methods to maintain
clear boundaries (e.g., adaptive methods excluded from classical, static methods excluded from continuous-time)

Differences: - Adaptive Minimax methods focus on learning-based update rule adaptation, while Classical Numerical Methods use fixed
iterative schemes - The original leaf targets optimization convergence rates through minimax formulations, whereas Continuous-Time
Models address time-varying decomposition problems - Adaptive Minimax is application-oriented toward neural network training, while
Theoretical Foundations emphasizes mathematical theory and generalizations - Classical methods employ acceleration techniques for
polynomial schemes, contrasting with the adaptive rule modification in minimax approaches

Suggested Search Directions: - Hybrid approaches combining adaptive minimax strategies with classical acceleration techniques -
Connections between continuous-time neural network models and discrete adaptive optimization - Theoretical convergence guarantees
for adaptive minimax methods compared to classical bounds

Sibling Subtopics
Classical Numerical Methods (leaves: 1, papers: 1)

Scope: Newton-based and polynomial iterative schemes for polar decomposition with acceleration techniques.

Exclude: Adaptive minimax methods and neural network-specific algorithms belong to other categories.

Continuous-Time and Discrete-Time Neural Network Models (leaves: 1, papers: 1)

Scope: Zeroing neural network approaches for time-varying polar decomposition with discretization schemes.

Exclude: Static matrix methods and deep learning optimization applications belong elsewhere.

Theoretical Foundations and Applications (leaves: 1, papers: 3)

Scope: Mathematical theory of polar decomposition including generalizations and educational treatments.

Exclude: Computational algorithms and specific optimization implementations belong to other categories.

Contributions Analysis
Overall  novelty  summary. The  paper  introduces  Polar  Express,  an  adaptive  minimax  method  for  computing  polar  decomposition
tailored to GPU-based neural network training. According to the taxonomy, it resides in the 'Adaptive Minimax Optimization Methods' leaf
under 'Polar Decomposition Algorithms and Theory'. Notably, this leaf contains no sibling papers in the current taxonomy, suggesting it
occupies  a  relatively  sparse  research  direction.  The  taxonomy  distinguishes  this  category  from  classical  fixed-rule  methods  and
continuous-time models,  positioning Polar Express as a specialized approach that adapts update rules via minimax optimization for
optimal convergence.

The  taxonomy  reveals  that  neighboring  leaves  include  'Classical  Numerical  Methods'  (Newton-based  and  polynomial  schemes),
'Continuous-Time and Discrete-Time Neural Network Models' (zeroing neural networks for time-varying decomposition), and 'Theoretical
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Foundations and Applications'  (mathematical  theory and generalizations).  The scope notes clarify  that  Polar  Express diverges from
classical fixed-rule methods by incorporating adaptive minimax optimization, and from continuous-time models by focusing on discrete
iterative  updates.  The broader  'Neural  Network Optimization with  Orthogonality  Constraints'  branch addresses  orthogonal  training
frameworks  and  low-rank  adaptation,  but  these  methods  typically  enforce  constraints  rather  than  compute  decompositions  as  a
subroutine.

Among 21 candidates examined across three contributions,  none were flagged as clearly refutable.  The core algorithm examined 5
candidates with 0 refutable matches; the optimality proof examined 6 candidates with 0 refutable matches; and the finite-precision
modifications examined 10 candidates with 0 refutable matches. This suggests that within the limited search scope—top-K semantic
matches plus citation expansion—no prior work was found that directly overlaps with the combination of adaptive minimax optimization,
GPU-oriented design, and bfloat16 compatibility. The absence of sibling papers in the taxonomy leaf further indicates that this specific
intersection of concerns has received limited prior attention.

Based on the limited literature search (21 candidates), the work appears to occupy a novel position at the intersection of classical polar
decomposition  theory  and  modern  deep  learning  infrastructure  demands.  The  taxonomy  structure  and  contribution-level  statistics
suggest that while related methods exist in neighboring leaves, the specific combination of adaptive minimax updates, GPU efficiency,
and low-precision arithmetic has not been extensively explored. However, the analysis does not cover exhaustive searches across all
numerical linear algebra or optimization venues, leaving open the possibility of relevant work outside the examined scope.

This paper presents 3 main contributions, each analyzed against relevant prior work:

Contribution 1: Polar Express algorithm for computing polar decomposition
Description: The authors propose Polar Express, an iterative method that dynamically adapts polynomial update rules at each iteration
by solving a minimax optimization problem. This approach minimizes worst-case error and converges super-exponentially while using
only GPU-friendly matrix-matrix multiplications.

This contribution was assessed against 5 related papers from the literature. Papers with potential prior art are analyzed in detail with
textual evidence; others receive brief assessments.

1. The matrix sign decomposition and its relation to the polar decomposition
URL: View paper

Brief Assessment

Matrix Sign Decomposition[21] focuses on the relationship between matrix sign decomposition and polar decomposition using rational
iterations (polynomials in numerator and denominator), not the specific minimax polynomial optimization approach of Polar Express.

2. A note on the extension of the polar decomposition for the multidimensional Burgers equation
URL: View paper

Brief Assessment

Burgers Polar Extension[23] addresses polar decomposition for the multidimensional Burgers equation in fluid dynamics, not iterative
matrix algorithms for neural network optimization. The mathematical contexts are entirely different.

3. SVD for very large matrices: An approach with polar decomposition and polynomial approximation
URL: View paper

Brief Assessment

SVD Large  Matrices[20]  focuses  on  accelerating  polar  decomposition  through  Chebyshev  polynomial  approximation  to  bypass  QR
decomposition  for  SVD applications.  The  original  paper's  Polar  Express  uses  minimax-optimal  polynomial  compositions  specifically
designed for GPU-friendly matrix-matrix multiplications in deep learning contexts, representing a different algorithmic approach and
application domain.

4. Rotation Matrix and Angles of Rotation in the Polar Decomposition
URL: View paper

Brief Assessment

Rotation  Matrix  Angles[24]  focuses  on  computing  rotation  matrices  and  angles  using  Newton's  and  Halley's  methods  for  polar
decomposition, not on developing optimal polynomial composition methods for GPU-friendly matrix sign computation as in the original
paper.

5. A sixth-order iterative method for approximating the polar decomposition of an arbitrary matrix
URL: View paper

Brief Assessment

Sixth-Order Iterative[22] focuses on a fixed sixth-order iterative scheme, whereas the original paper proposes an adaptive method that
dynamically changes polynomial update rules at each iteration by solving minimax optimization problems.

Contribution 2: Optimality proof for composition of polynomials
Description:  The  authors  prove  that  their  greedy  polynomial  selection  strategy  yields  the  optimal  composition  of  polynomials  for
approximating the matrix sign function in the supremum norm. This theoretical result (Theorem 3.1) guarantees that Polar Express
achieves the best possible worst-case convergence rate.

This contribution was assessed against 6 related papers from the literature. Papers with potential prior art are analyzed in detail with
textual evidence; others receive brief assessments.

1. Polynomial approximation of piecewise analytic functions
URL: View paper

Brief Assessment

Piecewise  Analytic  Approximation[41]  focuses  on  approximating  piecewise  analytic  functions  using  polynomial  sequences  with
exponential convergence rates. The ORIGINAL paper addresses optimal polynomial composition for matrix sign function approximation in
the supremum norm with worst-case convergence guarantees (Theorem 3.1), which is a different problem domain.

2. A PadÃ© family of iterations for the matrix sign function and related problems
URL: View paper

Brief Assessment

Pade Matrix Sign[37] focuses on convergence regions for Padé iterations for matrix sign/sector functions, not on optimality of polynomial
compositions in the supremum norm sense claimed by the original paper.
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3.  2-norm  error  bounds  and  estimates  for  Lanczos  approximations  to  linear  systems  and  rational  matrix
functions
URL: View paper

Brief Assessment

Lanczos Error Bounds[39] focuses on error estimation for Lanczos approximations to linear systems and rational matrix functions using
Gaussian quadrature theory, not on optimal polynomial approximation for the matrix sign function or worst-case convergence rates for
polar decomposition methods.

4. Computing the matrix sign and absolute value functions
URL: View paper

Brief Assessment

Matrix Sign Function[40] focuses on polynomial iterations for matrix sign computation with known eigenvalue locations, but does not
establish optimality of polynomial compositions in the supremum norm sense proven in the original paper's Theorem 3.1.

5. Computing via Least Squares Polynomial Approximations
URL: View paper

Brief Assessment

Least Squares Polynomial[38] focuses on approximating matrix functions via least squares polynomial approximations to splines, not on
proving optimality of greedy polynomial composition for matrix sign function approximation in the supremum norm.

6. A Sixth-Order Iterative Scheme Through Weighted Rational Approximations for Computing the Matrix Sign
Function
URL: View paper

Brief Assessment

Weighted Rational Approximations[36] uses rational approximations with weight functions for the matrix sign function, while the original
paper proves optimality for polynomial compositions in the supremum norm. These are fundamentally different approximation strategies
(rational vs. polynomial).

Contribution 3: Finite-precision modifications for bfloat16 compatibility
Description: The authors develop specific modifications to stabilize the algorithm when working in half-precision arithmetic (bfloat16),
including rescaling polynomials and using slightly suboptimal polynomials in early iterations to handle numerical round-off errors.

This contribution was assessed against 10 related papers from the literature. Papers with potential prior art are analyzed in detail with
textual evidence; others receive brief assessments.

1. Mixed precision algorithms in numerical linear algebra
URL: View paper

Brief Assessment

Mixed Precision Algorithms[30]  is  a  survey of  mixed precision numerical  linear algebra algorithms broadly.  It  does not  specifically
address  the  polar  decomposition  algorithm or  the  particular  finite-precision  modifications  (rescaling  polynomials,  using  suboptimal
polynomials in early iterations) that the original paper develops for their specific polar express method in bfloat16.

2.  An SMT Formalization  of  Mixed-Precision  Matrix  Multiplication:  Modeling  Three  Generations  of  Tensor
Cores
URL: View paper

Brief Assessment

Tensor Cores SMT[28] focuses on formalizing tensor core behavior for matrix multiplication hardware, not on algorithmic modifications
for numerical stability in bfloat16 arithmetic for iterative matrix algorithms.

3. Probabilistic rounding error analysis for numerical linear algebra
URL: View paper

Brief Assessment

Probabilistic  Rounding  Error[32]  focuses  on  probabilistic  error  analysis  for  numerical  linear  algebra  operations,  not  on  specific
algorithmic modifications for stabilizing matrix sign methods in bfloat16 arithmetic as developed in the original paper.

4. Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers
URL: View paper

Brief Assessment

Sparse  Solver  Arithmetics[29]  evaluates  bfloat16  in  sparse  linear  solvers  (LU,  QR,  GMRES)  but  does  not  address  the  specific
modifications needed for matrix sign function computation or polar decomposition algorithms in half-precision arithmetic, which is the
focus of the original paper's contribution.

5. When precision meets position: Bfloat16 breaks down rope in long-context training
URL: View paper

Brief Assessment

Bfloat16 RoPE[25] addresses numerical stability issues in rotary position embeddings under bfloat16 precision for long-context training,
not matrix sign function algorithms. The candidate focuses on positional encoding degradation in transformers, while the original paper
develops polynomial rescaling methods for matrix polar decomposition in the Muon optimizer.

6. Numerical Performance of the Implicitly Restarted Arnoldi Method in OFP8, Bfloat16, Posit,  and Takum
Arithmetics
URL: View paper

Brief Assessment

Arnoldi Mixed Precision[27] evaluates the Arnoldi method across various precision formats (OFP8, bfloat16, posit, takum) but does not
develop specific algorithmic modifications for stabilizing matrix algorithms in half-precision arithmetic. The original paper's contribution
involves developing rescaling polynomials and using suboptimal polynomials in early iterations to handle numerical round-off errors in
bfloat16, which is a distinct algorithmic innovation not addressed in the candidate.
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7. High accuracy matrix computations on neural engines: A study of qr factorization and its applications
URL: View paper

Brief Assessment

Neural Engines QR[34] addresses half-precision (fp16) arithmetic for QR factorization, not the polar decomposition algorithm in bfloat16.
The candidate focuses on matrix factorization stability rather than polynomial iteration methods for matrix sign functions.

8. Approximate computing in numerical linear algebra: algorithms, analysis, and applications
URL: View paper

Brief Assessment

Approximate Computing[33] is a broad survey on approximate computing in numerical linear algebra. While it discusses finite-precision
considerations and low-precision arithmetic (including bfloat16), it does not specifically address the polar decomposition algorithm or the
particular stabilization techniques (rescaling polynomials, using suboptimal polynomials in early iterations) described in the original
paper's contribution.

9. A survey of numerical linear algebra methods utilizing mixed-precision arithmetic
URL: View paper

Brief Assessment

Mixed-Precision Survey[26] focuses on numerical linear algebra methods across various precision formats (fp16, bfloat16, fp32, fp64) but
does  not  specifically  address  polynomial-based matrix  sign  function  algorithms or  the  particular  stabilization  techniques  (rescaling
polynomials, using suboptimal polynomials in early iterations) described in the original paper's contribution.

10. Squeezing a matrix into half precision, with an application to solving linear systems
URL: View paper

Brief Assessment

Half  Precision Matrix[31] focuses on converting matrices to half  precision for linear system solvers (GMRES-IR),  not on stabilizing
iterative polynomial methods for computing polar decompositions in neural network optimizers.

Appendix: Text Similarity Detection
No high-similarity text segments were detected across any compared papers.
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