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Abstract
Effective LLM training relies on  consistency,  meaning that key quantities—such as final losses and optimal hyperparameters—scale
predictably across model sizes. Qiu et al. (2025) recently showed that this consistency extends beyond scalars: whole training loss curves
can collapse onto a universal trajectory after a simple normalization. What remains unclear is whether this phenomenon holds for LLM
families trained under practical scaling recipes, where width, depth, learning rate, batch size, and weight decay are scaled jointly. We
show that it does: loss curves collapse across scales precisely when optimization hyperparameters are set optimally for the given data
budget,  in  accordance  with  recent  empirical  scaling  laws.  Collapse  thus  emerges  as  a  signature  of  compute-efficient  training.  We
demonstrate two applications at scale: (1) deviation-from-collapse provides a sensitive, early diagnostic of training pathologies, and (2)
the predictability of collapsed curves enables early stopping in large-scale hyperparameter tuning. Finally, we train a competitive LLM
family, Celerity, using these insights, highlighting collapse as an effective tool for developing efficient LLMs.
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Core Task Landscape
This paper addresses: Training Loss Curve Prediction and Collapse Across Model Scales

A total of 36 papers were analyzed and organized into a taxonomy with 30 categories.

Taxonomy Overview
The research landscape has been organized into the following main categories:

Scaling Laws and Loss Prediction

Loss Curve Collapse and Universality

Training Dynamics and Phase Transitions

Training Instabilities and Pathologies

Optimization and Hyperparameter Scaling

Theoretical Foundations and Mechanistic Models

Data and Training Efficiency

Model Compression and Efficiency

Implicit Bias and Downstream Performance

Domain-Specific Applications

Complete Taxonomy Tree
Training Loss Curve Prediction and Collapse Across Model Scales Survey Taxonomy

Scaling Laws and Loss Prediction

Foundational Scaling Law Formulations (3 papers)

[1] Scaling laws for neural language models (Kaplan, 2020) View paper

[2] An empirical analysis of compute-optimal large language model training (J Hoffmann, 2022) View paper

[11] Unraveling the Mystery of Scaling Laws: Part I (Su Hui, 2024) View paper

Cross-Distribution and Transfer Prediction (1 papers)

[9] Loss-to-loss prediction: Scaling laws for all datasets (Brandfonbrener, 2024) View paper

Architecture-Specific Scaling Laws (3 papers)

[7] Scaling laws across model architectures: A comparative analysis of dense and MoE models in large language models (Chen
Zheng-yu, 2024) View paper

[14] Are protein language models compute optimal? (Molina, 2024) View paper

[15] Efficient training of self-supervised speech foundation models on a compute budget (Andy T. Liu, 2024) View paper

Precision and Quantization Effects on Scaling (1 papers)

[4] Scaling Laws for Precision (Kumar, 2024) View paper

Loss Curve Collapse and Universality

Compute-Optimal Collapse Phenomena ★ (2 papers)

[0] Scaling with Collapse: Efficient and Predictable Training of LLM Families (Anon et al., 2026) View paper

[27] Scaling Collapse Reveals Universal Dynamics in Compute-Optimally Trained Neural Networks (Qiu, 2025) View paper

Width-Invariant Feature Learning Consistency (1 papers)

[8] Feature-Learning Networks Are Consistent Across Widths At Realistic Scales (Vyas, 2023) View paper

Training Dynamics and Phase Transitions

Loss Deceleration and Zero-Sum Learning (1 papers)

[21] Training Dynamics Underlying Language Model Scaling Laws: Loss Deceleration and Zero-Sum Learning (Mircea, 2025) View
paper

Grokking and Critical Data Size Transitions (1 papers)
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[10] Critical data size of language models from a grokking perspective (Zhu, 2024) View paper

Training Trajectory Analysis Across Scales (1 papers)

[19] Training Trajectories of Language Models Across Scales (Artetxe, 2023) View paper

Epochal and Oscillatory Loss Patterns (1 papers)

[29] The Epochal Sawtooth Phenomenon: Unveiling Training Loss Oscillations in Adam and Other Optimizers: Q. Liu, W. Ma (Q Liu,
2025) View paper

Training Instabilities and Pathologies

Large-Scale Instability Reproduction at Small Scale (1 papers)

[6] Small-scale proxies for large-scale transformer training instabilities (Wortsman, 2023) View paper

Architecture-Specific Training Collapse (1 papers)

[18] Learning rate collapse prevents training recurrent neural networks at scale (B Kurtkaya, 2025) View paper

Inverse Scaling and Performance Degradation (1 papers)

[5] Inverse Scaling: When Bigger Isn't Better (McKenzie, 2023) View paper

Optimization and Hyperparameter Scaling

Learning Rate Scaling and Adaptive Search (1 papers)

[28] AdaLRS: Loss-Guided Adaptive Learning Rate Search for Efficient Foundation Model Pretraining (Dong Hongyuan, 2025) View
paper

Learning Rate Schedules and Functional Scaling (1 papers)

[20] Functional Scaling Laws in Kernel Regression: Loss Dynamics and Learning Rate Schedules (Li, 2025) View paper

Batch Size Scaling and Data Parallelism (1 papers)

[17] An empirical model of large-batch training (McCandlish, 2018) View paper

Loss Curvature and Conditioning Effects (1 papers)

[13] A loss curvature perspective on training instabilities of deep learning models (J Gilmer, 2022) View paper

Theoretical Foundations and Mechanistic Models

Random Feature and Kernel Models of Scaling (1 papers)

[31] A Dynamical Model of Neural Scaling Laws (Bordelon, 2024) View paper

Zipf's Law and Power-Law Task Structure (1 papers)

[16] AlphaZero Neural Scaling and Zipf's Law: a Tale of Board Games and Power Laws (Neumann, 2024) View paper

Interpolation Regime and Generalization Theory (2 papers)

[34] Generalization and Optimization in the Interpolation Regime: From Linear Models to Neural Networks (Hossein, 2024) View
paper

[36] A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors (Nikhil Ghosh, 2023)  View
paper

Infinite-Width and Convergence Limits (2 papers)

[12] Infinite limits of multi-head transformer dynamics (Blake Bordelon, 2024) View paper

[30] Learning in Large Neural Networks (Davide Anguita, 2025) View paper

Data and Training Efficiency

Loss-Based Sample Reweighting and Selection (1 papers)

[23] Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining (Sow, 2025) View paper

Synthetic Data Mixing and Training Effects (1 papers)

[24] Characterizing Model Behavior Under Synthetic Data Training: An Empirical Study Across Scales and Mixing Ratios (Du Y,
2025) View paper

Vocabulary Size and Tokenization Effects (1 papers)

[22] Exploiting Vocabulary Frequency Imbalance in Language Model Pre-training (Chung Woojin, 2025) View paper

Early Stopping and Hyperparameter Tuning via Loss Prediction (1 papers)

[35] nanoLM: an Affordable LLM Pre-training Benchmark via Accurate Loss Prediction across Scales (Yao Yi-qun, 2023) View paper

Model Compression and Efficiency

Low-Rank Factorization and SVD-Based Compression (1 papers)

[32] Integrating Independent Layer-Wise Rank Selection with Low-Rank SVD Training for Model Compression: A Theory-Driven
Approach (Yifan Guo, 2024) View paper

Dense Layer Replacement with Efficient Structures (1 papers)

[33] Exploration of replacing Dense Layers with Higher Efficiency Structures (Li, 2025) View paper

Unlearning Geometry and Loss Dynamics (1 papers)

[25] The Geometry of Forgetting: Analyzing Machine Unlearning through Local Learning Coefficients (A Muhamed, 2025)  View
paper

Implicit Bias and Downstream Performance (1 papers)

[3] Same pre-training loss, better downstream: Implicit bias matters for language models (Liu Hong, 2023) View paper

Domain-Specific Applications (1 papers)

[26] Towards Real-Time Monitoring of High-Voltage Insulators: Progressive Flashover Classification Using Quantized Deep Learning
(Khan, 2025) View paper

Narrative
Core task: training loss curve prediction and collapse across model scales. The field investigates how neural network training loss evolves
as a function of model size, data, and compute, seeking predictable patterns that generalize across scales. The taxonomy organizes this
landscape into several major branches. Scaling Laws and Loss Prediction focuses on empirical power-law relationships that forecast final
performance  from  resource  budgets,  exemplified  by  foundational  work  like  Scaling  Laws[1]  and  compute-optimal  studies  such  as
Chinchilla[2]. Loss Curve Collapse and Universality examines whether training curves from different model sizes can be mapped onto a
single master curve, revealing universal structure in optimization dynamics. Training Dynamics and Phase Transitions studies abrupt
changes  in  learning  behavior,  while  Training  Instabilities  and  Pathologies  addresses  phenomena  like  loss  spikes  and  divergence.
Optimization and Hyperparameter Scaling explores how learning rates and batch sizes should adapt with model scale, and Theoretical
Foundations seeks mechanistic explanations for observed regularities. Additional branches cover data efficiency, model compression,
implicit  bias effects on downstream tasks,  and domain-specific applications ranging from protein language models to reinforcement
learning.

Recent work has intensified focus on whether loss curves truly collapse in a universal manner and what this implies for predicting large-
scale behavior from small-scale proxies. Studies like Small-scale Proxies[6] and Loss-to-loss Prediction[9] explore whether cheaper pilot
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runs  can  reliably  forecast  expensive  training  outcomes,  while  Feature-Learning  Consistency[8]  investigates  whether  internal
representations evolve similarly across scales. The original paper, Scaling with Collapse[0], sits squarely within the Loss Curve Collapse
and Universality branch, specifically addressing compute-optimal collapse phenomena. It shares thematic ground with Scaling Collapse
Universal[27],  which  also  examines  universal  collapse  properties,  but  Scaling  with  Collapse[0]  emphasizes  how  collapse  behavior
manifests under compute-optimal training regimes where model size and data are jointly scaled. This contrasts with earlier scaling law
studies like Scaling Laws Precision[4] that focused primarily on predictive accuracy of power laws rather than the geometric structure of
curve families, highlighting an evolving interest in deeper invariances beyond simple extrapolation formulas.

Related Works in Same Category
The following 1 sibling papers share the same taxonomy leaf node with the original paper:

1. Scaling Collapse Reveals Universal Dynamics in Compute-Optimally Trained Neural Networks
Authors: Qiu, Shikai, Xiao, Lechao, Wilson, et al. (10 authors total) | Year/Venue: 2025 • arXiv (Cornell University) | URL: View paper

Abstract
What scaling limits govern neural network training dynamics when model size and training time grow in tandem? We show that despite
the complex interactions between architecture, training algorithms, and data, compute-optimally trained models exhibit a remarkably
precise universality. Specifically, loss curves from models of varying sizes collapse onto a single universal curve when training compute
and loss are normalized to unity at the end of training. With learning rate decay, the collapse bec...

Relationship Analysis
Both papers  belong to  the  Compute-Optimal  Collapse  Phenomena category,  investigating  how training loss  curves  collapse  under
compute-optimal conditions and using this collapse as a diagnostic tool. They overlap in demonstrating that normalized loss curves
collapse across model scales when trained compute-optimally, and both explore collapse as a signature of efficient training. The key
difference  is  that  the  original  paper  (Scaling  with  Collapse)  focuses  on  practical  LLM training  at  scale  with  the  Celerity  family,
emphasizing the role of AdamW timescale τ and TPP ratio in achieving collapse, while the candidate paper (Scaling Collapse Reveals
Universal  Dynamics)  provides  deeper  theoretical  analysis  of  collapse mechanisms through power-law scaling laws and SGD noise
dynamics, introducing the concept of "supercollapse" where deviations fall below noise floors.

Contributions Analysis
Overall novelty summary. The paper demonstrates that training loss curves collapse onto a universal trajectory when optimization
hyperparameters are scaled optimally with model size and data budget. It resides in the 'Compute-Optimal Collapse Phenomena' leaf,
which contains only two papers total,  indicating a relatively sparse research direction within the broader 'Loss Curve Collapse and
Universality' branch. The work extends recent findings on loss curve collapse by showing the phenomenon holds under practical joint
scaling of width, depth, learning rate, batch size, and weight decay—a setting closer to real-world LLM training than prior studies.

The taxonomy reveals that this work sits at the intersection of multiple research threads. Its parent branch 'Loss Curve Collapse and
Universality' is adjacent to 'Scaling Laws and Loss Prediction', which contains foundational power-law studies across seven papers in four
sub-categories.  Neighboring  branches  include  'Training  Dynamics  and  Phase  Transitions'  (examining  temporal  behavior)  and
'Optimization and Hyperparameter Scaling' (studying how hyperparameters adapt with scale). The paper bridges these areas by linking
collapse phenomena to compute-optimal hyperparameter choices, connecting geometric curve structure to optimization efficiency in
ways that prior scaling law formulations did not emphasize.

Among 29 candidates examined, the core collapse demonstration (Contribution 1) shows one refutable candidate from 9 examined,
suggesting some prior work on collapse exists but coverage is limited. The Celerity LLM family (Contribution 2) examined 10 candidates
with none refutable,  indicating the specific model  instantiation appears novel  within this  search scope.  The early  stopping method
(Contribution 3) found 2 refutable candidates among 10 examined, suggesting related hyperparameter tuning approaches exist. The
limited search scale means these statistics reflect top-semantic-match coverage rather than exhaustive field surveys, and the sparse
taxonomy leaf suggests this research direction remains relatively unexplored.

Given the small sibling set and limited candidate pool examined, the work appears to occupy a genuinely sparse area where loss curve
collapse meets compute-optimal training. The analysis covers top-30 semantic matches and does not claim exhaustive coverage of all
hyperparameter tuning or scaling law literature. The taxonomy structure suggests the field is actively fragmenting into specialized sub-
problems, with this paper carving out a niche at the intersection of collapse phenomena and practical scaling recipes.

This paper presents 3 main contributions, each analyzed against relevant prior work:

Contribution  1:  Demonstration  that  training  loss  curves  collapse  under  optimal  hyperparameter
scaling
Description: The authors show that normalized training loss curves (TLCs) collapse onto a universal trajectory across different model
sizes when the AdamW timescale τ, tokens-per-parameter ratio (TPP), and learning rate schedule are properly aligned. This collapse
emerges as a signature of compute-efficient training.

This contribution was assessed against 9 related papers from the literature. Papers with potential prior art are analyzed in detail with
textual evidence; others receive brief assessments.

1. Scaling laws for neural language models
URL: View paper

Brief Assessment

Scaling Laws[1] focuses on power-law relationships between loss and compute/model/data size, not on normalized training loss curve
collapse across scales under optimal hyperparameter alignment (τ, TPP, learning rate schedule).

2. nanoLM: an Affordable LLM Pre-training Benchmark via Accurate Loss Prediction across Scales
URL: View paper

Brief Assessment

nanoLM[35]  focuses  on  predicting  final  training  loss  values  across  model  scales  using  µP-based  hyperparameter  transfer,  not  on
demonstrating that normalized training loss curves collapse onto a universal trajectory when hyperparameters are optimally scaled.

3. Critical Batch Size Revisited: A Simple Empirical Approach to Large-Batch Language Model Training
URL: View paper

Brief Assessment

Critical Batch Size[51] focuses on measuring critical batch size through branched training experiments and does not address training
loss curve collapse across model scales with optimal hyperparameters.
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4. Scaling Collapse Reveals Universal Dynamics in Compute-Optimally Trained Neural Networks
URL: View paper

Prior Art Analysis

Scaling Collapse Universal[27] demonstrates that compute-optimally trained models exhibit training loss curve collapse when normalized
appropriately.  The paper shows that 'loss curves from models of varying sizes collapse onto a single universal curve when training
compute and loss are normalized to unity at the end of training' and introduces the concept of 'supercollapse' where differences fall
below noise floors. This work was published prior to the original paper and explicitly demonstrates the same phenomenon of normalized
training loss curves collapsing across different model sizes under compute-optimal conditions, directly challenging the novelty claim.

Evidence

Evidence 1 - Rationale: The original paper explicitly cites 'qiu et al. (2025)' as prior work demonstrating TLC collapse, and the candidate
paper  (Scaling  Collapse  Universal[27])  shows  this  phenomenon  across  multiple  architectures  and  conditions,  establishing  prior
demonstration of the collapse phenomenon. -  Original:  qiu et al.  (2025) only recently demonstrated this striking regularity in tlcs,
showing collapse when training with µp on small-scale autoregressive tasks. - Candidate: we observe supercollapse across learning rate
schedules,  datasets,  and  architectures,  including  transformers  trained  on  next-token  prediction,  and  find  it  breaks  down  when
hyperparameters are scaled suboptimally, providing a precise and practical indicator of good scaling.

Evidence 2 - Rationale: Both papers establish that collapse occurs under optimal hyperparameter settings aligned with compute-optimal
training, demonstrating the same fundamental insight about the conditions for collapse. -  Original: we show that it does: loss curves
collapse across scales precisely when optimization hyperparameters are set optimally for the given data budget, in accordance with
recent empirical scaling laws. -  Candidate:  we first show that for loss curves following typical neural scaling laws, collapse occurs
precisely when models are trained for constant multiples of their compute-optimal horizons

5. Hyperparameter Transfer Enables Consistent Gains of Matrix-Preconditioned Optimizers Across Scales
URL: View paper

Brief Assessment

Hyperparameter Transfer Preconditioned[52] focuses on hyperparameter transfer for matrix-preconditioned optimizers (Shampoo, SOAP,
Muon) across model scales, not on training loss curve collapse phenomena. The paper studies learning rate and weight decay scaling
rules to achieve consistent optimizer performance, which is a different technical contribution from demonstrating universal training loss
curve trajectories.

6. Warmstarting for scaling language models
URL: View paper

Brief Assessment

Warmstarting Scaling[50] focuses on warmstarting techniques for transferring weights and hyperparameters across model scales using
µTransfer, not on training loss curve collapse phenomena or optimal hyperparameter scaling laws.

7. Resolving discrepancies in compute-optimal scaling of language models
URL: View paper

Brief Assessment

Compute-optimal Discrepancies[47] focuses on resolving discrepancies between different compute-optimal scaling laws (Kaplan et al. vs
Hoffmann et al.) by analyzing factors like flop counting, warmup duration, and optimizer tuning. It does not address training loss curve
collapse across model scales as a phenomenon or signature of compute-efficient training.

8. Exploring molecular pretraining model at scale
URL: View paper

Brief Assessment

Molecular Pretraining Scale[49] focuses on molecular pretraining models and scaling laws in chemistry/biology domains, not on training
loss curve collapse across language model scales with hyperparameter optimization.

9. Simplifying DINO via Coding Rate Regularization
URL: View paper

Brief Assessment

Simplifying DINO[48] focuses on simplifying self-supervised learning pipelines through coding rate regularization, not on training loss
curve collapse across model scales with optimal hyperparameters.

Contribution 2: Celerity LLM family trained with collapse-inducing hyperparameter scaling
Description: The authors introduce Celerity, the first large-scale LLM family (300M–3.9B parameters) explicitly trained in fixed-TPP
bands with optimal τ scaling to achieve training loss curve collapse. This family demonstrates compute-efficiency and provides practical
validation of collapse principles at scale.

This contribution was assessed against 10 related papers from the literature. Papers with potential prior art are analyzed in detail with
textual evidence; others receive brief assessments.

1. Jet-Nemotron: Efficient Language Model with Post Neural Architecture Search
URL: View paper

Brief Assessment

Jet-Nemotron[42] focuses on neural architecture search for hybrid-architecture models with linear attention blocks, not on training loss
curve collapse or hyperparameter scaling principles for compute-efficient training.

2. Minicpm: Unveiling the potential of small language models with scalable training strategies
URL: View paper

Brief Assessment

MiniCPM[40] focuses on small language models (1.2B-2.4B parameters) using a WSD (warmup-stable-decay) learning rate scheduler for
continuous training and domain adaptation.  While both papers explore compute-efficient  training strategies,  MiniCPM[40] does not
demonstrate training loss curve collapse across model scales as a signature of compute-efficient training, nor does it explicitly train
model families in fixed tokens-per-parameter bands with optimal τ scaling.

3. Tuning large neural networks via zero-shot hyperparameter transfer
URL: View paper
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Brief Assessment

Zero-shot  Hyperparameter  Transfer[39]  focuses  on  transferring  hyperparameters  across  model  widths  using  maximal  update
parametrization (µP), not on training LLM families with collapse-inducing hyperparameter scaling or demonstrating training loss curve
collapse as a signature of compute-efficient training.

4. Scaling laws for generative mixed-modal language models
URL: View paper

Brief Assessment

Mixed-modal Scaling[45] focuses on scaling laws for generative mixed-modal language models across different modalities (text, speech,
images, code), not on training loss curve collapse or hyperparameter scaling for compute-efficient training within a single modality
family.

5. Communication-Efficient Language Model Training Scales Reliably and Robustly: Scaling Laws for DiLoCo
URL: View paper

Brief Assessment

DiLoCo Scaling[44] focuses on distributed training with relaxed synchronization and scaling laws for communication-efficient training,
not on training loss curve collapse or hyperparameter scaling to achieve collapse across model sizes.

6. Scaling laws for differentially private language models
URL: View paper

Brief Assessment

Differentially Private Scaling[46] focuses on privacy-preserving language model training with differential privacy constraints, not on
training loss curve collapse or compute-efficient hyperparameter scaling without privacy considerations.

7. Tensor programs v: Tuning large neural networks via zero-shot hyperparameter transfer
URL: View paper

Brief Assessment

Tensor Programs Five[38] focuses on zero-shot hyperparameter transfer across model widths using maximal update parametrization (µP),
not on training loss curve collapse or compute-efficient LLM families with optimal τ scaling.

8. Cerebras-GPT: Open Compute-Optimal Language Models Trained on the Cerebras Wafer-Scale Cluster
URL: View paper

Brief Assessment

Cerebras-GPT[41] focuses on compute-optimal training following Chinchilla scaling rules (20 tokens per parameter) without exploring
training loss curve collapse or hyperparameter scaling for collapse. The candidate does not address the collapse phenomenon or τ-based
hyperparameter optimization that defines Celerity's novelty.

9. Scaling data-constrained language models
URL: View paper

Brief Assessment

Data-constrained Scaling[37] focuses on training language models under data constraints using repeated data and scaling laws for
compute allocation, not on training loss curve collapse or hyperparameter scaling to achieve collapse across model sizes.

10. A system for massively parallel hyperparameter tuning
URL: View paper

Brief Assessment

Massively Parallel Tuning[43] focuses on hyperparameter optimization infrastructure and the ASHA algorithm for distributed tuning, not
on training LLM families with specific hyperparameter scaling recipes to achieve training loss curve collapse.

Contribution 3: Early stopping method for hyperparameter tuning using collapse predictions
Description: The authors propose a functional form for normalized TLCs that can be fit on small-scale runs and used to extrapolate final
loss from partial trajectories. This enables selecting optimal hyperparameters after only 10–30% of training, significantly reducing tuning
compute costs.

This contribution was assessed against 10 related papers from the literature. Papers with potential prior art are analyzed in detail with
textual evidence; others receive brief assessments.

1. Improving Hyperparameter Optimization with Checkpointed Model Weights
URL: View paper

Brief Assessment

Checkpointed Model Weights[54] focuses on using logged network weights in a Gaussian process surrogate model for hyperparameter
optimization, not on predicting loss curves from partial training trajectories for early stopping.

2. Optimizing coronary artery disease diagnosis:  a heuristic approach using robust data preprocessing and
automated hyperparameter tuning of eXtreme gradient â�¦
URL: View paper

Brief Assessment

Coronary  Artery  Optimization[57]  uses  early  stopping  as  a  built-in  XGBoost  feature  for  model  training,  not  as  a  method  for
hyperparameter tuning via loss curve prediction. The contexts are fundamentally different: medical diagnosis optimization versus LLM
training efficiency.

3. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning
curves.
URL: View paper

Prior Art Analysis

Extrapolation  Learning  Curves[62]  demonstrates  prior  work  on  early  stopping  for  hyperparameter  tuning  using  learning  curve
prediction. The candidate paper presents a probabilistic model that extrapolates performance from partial learning curves to enable early
termination of poor hyperparameter configurations. Both papers address the same core problem: predicting final performance from
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partial  training  trajectories  to  enable  early  stopping  in  hyperparameter  optimization.  The  candidate  explicitly  states  their  method
'mimic[s] the early termination of bad runs using a probabilistic model that extrapolates the performance from the first part of a learning
curve' and demonstrates 'predictive termination speeds up current hyperparameter optimization methods for dnns by roughly a factor of
two.' This directly challenges the novelty claim that the original authors were first to propose using loss curve extrapolation for early
stopping in hyperparameter tuning.

Evidence

Evidence 1 -  Rationale: Both papers propose using learning curve extrapolation to enable early termination. The candidate explicitly
describes a probabilistic model for extrapolating from partial learning curves, which is the same fundamental approach as the original
paper's predictive model for normalized TLCs. - Original: we show collapse enables principled early stopping in tuning, and introduce a
predictive model-fit at small scales, and re-used to extrapolate large-scale tlcs. - Candidate: in this work, we mimic this early termination
of bad runs with the help of a probabilistic model that extrapolates performance from the first part of a learning curve to its remainder,
enabling us to automatically identify and terminate bad runs to save time.

Evidence  2 -  Rationale:  Both  papers  demonstrate  that  early  stopping  based  on  learning  curve  prediction  significantly  reduces
hyperparameter tuning time. The candidate shows 2x speedup, while the original shows reliable selection at 10-30% of training—both
achieving the same goal of computational savings through early prediction. - Original: predicted best achieves negligible loss gaps when
stopping after just 30% and 10% of training, respectively... key takeaway 3: collapse makes early stops reliable: align each tlc to a small-
scale predictor, infer l(t), and choose the best hyperparameters by 10-30% of training-saving tuning compute. - Candidate: experiments
with different neural network architectures on the prominent object recognition benchmarks cifar-10, cifar-100 and mnist show that
predictive termination speeds up current hyperparameter optimization methods for dnns by roughly a factor of two, enabling them to find
dnn settings that yiel...

4. Learning curve prediction with Bayesian neural networks
URL: View paper

Brief Assessment

Bayesian  Learning  Curves[61]  focuses  on  predicting  learning  curves  for  individual  hyperparameter  configurations  to  enable  early
termination of  poorly-performing runs.  The original  paper's  contribution involves using collapse phenomena across model  scales to
enable early stopping in hyperparameter tuning by extrapolating final loss from partial trajectories at 10-30% of training. These are
technically distinct approaches: one predicts individual curve behavior, the other exploits scale-invariant collapse patterns.

5. On the difficulty of DNN hyperparameter optimization using learning curve prediction
URL: View paper

Brief Assessment

Learning Curve Difficulty[59]  focuses  on the challenges and limitations  of  using learning curve prediction for  early  termination in
hyperparameter optimization, demonstrating that effectiveness varies drastically with task and hyperparameter choices. The original
paper proposes a specific functional form based on collapse theory for LLM training curves, which is a distinct technical approach not
addressed in the candidate.

6. Neural Velocity for hyperparameter tuning
URL: View paper

Brief Assessment

Neural Velocity[60] focuses on early stopping using neural velocity (rate of change of neuron transfer functions) rather than loss curve
collapse predictions. The candidate does not demonstrate prior work on predicting final loss from normalized training loss curves or
using collapse phenomena for hyperparameter selection.

7. Scaling laws for hyperparameter optimization
URL: View paper

Prior Art Analysis

Hyperparameter Optimization Scaling[53] demonstrates that learning curves can be predicted using power law functions, enabling early
stopping in hyperparameter tuning after observing only partial training trajectories. The paper shows that by fitting power law models on
small-scale runs, they can extrapolate final performance and select optimal hyperparameters after 10-30% of training, which directly
addresses the same problem as the original paper's contribution of using collapse predictions for early stopping.

Evidence

Evidence 1 -  Rationale: Both papers propose methods for early stopping in hyperparameter tuning by predicting learning curves. The
candidate uses power law models while the original uses normalized training loss curves (TLCs), but both enable stopping training early
based on predictions. -  Original: we propose a simple functional form for normalized tlcs, and showing that fitting this form on small-
scale training runs enables early stopping in large-scale hyperparameter tuning - Candidate: in this work, we propose deep power laws
(dpl),  an ensemble of  neural  network models  conditioned to  yield  predictions that  follow a power-law scaling pattern.  our  method
dynamically decides which configurations to pause and train incrementally by making use of gray-box evaluations.

Evidence 2 -  Rationale: Both papers demonstrate the ability to predict final performance from partial learning curves and use this for
early stopping in hyperparameter tuning, achieving similar goals of reducing computational costs. - Original: collapse makes early stops
reliable: align each tlc to a small-scale predictor, infer l(t), and choose the best hyperparameters by 10-30% of training-saving tuning
compute. -  Candidate: in this experiment, we evaluate the predictive performance of forecasting models that given a fraction of the
observed learning curve, estimate the remaining unobserved segment of the curve, on the lcbench benchmark.

8. Surpassing early stopping: A novel correlation-based stopping criterion for neural networks
URL: View paper

Brief Assessment

Correlation-based  Stopping[55]  focuses  on  preventing  overfitting  by  monitoring  train-validation  correlation  divergence,  not  on
hyperparameter selection via loss curve extrapolation from partial trajectories as in the original paper.

9. Keeping deep learning models in check: A history-based approach to mitigate overfitting
URL: View paper

Brief Assessment

History-based  Overfitting[56]  focuses  on  detecting  and  preventing  overfitting  in  software  engineering  deep  learning  models  using
validation loss histories, not on hyperparameter tuning via loss curve extrapolation for LLM training.

10. Early stopping on CNN-LSTM development to improve classification performance
URL: View paper
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Brief Assessment

CNN-LSTM Early Stopping[58] focuses on preventing overfitting in CNN-LSTM models during training by monitoring validation loss, not
on hyperparameter tuning or loss curve prediction for selecting optimal hyperparameters across model scales.

Appendix: Text Similarity Detection
Textual similarity detection checked 29 papers and found 1 similarity segment(s) across 1 paper(s).

The following 1 paper(s) were detected to have high textual similarity with the original paper. These may represent different versions of
the same work, duplicate submissions, or papers with substantial  textual overlap. Readers are advised to verify these relationships
independently.

1. Tensor programs v: Tuning large neural networks via zero-shot hyperparameter transfer
Detected in: Contribution: contribution_2

⚠ Note: This paper shows substantial textual similarity with the original paper. It may be a different version, a duplicate submission, or
contain significant overlapping content. Please review carefully to determine the nature of the relationship.
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