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Abstract
Navigation is a fundamental capability in embodied AI, representing the intelligence required to perceive and interact within physical
environments. To achieve such intelligence, recent advanced works leverage Vision-Language Models (VLMs), which demonstrate strong
generalizability and possess a well-suited formulation for navigation. However, these approaches remain largely confined to narrow task
settings and embodiment-specific architectures. In this work, we introduce a cross-embodiment and cross-task Navigation Foundation
Model (NavFoM), trained on eight million navigation samples that encompass quadrupeds, drones, wheeled robots, and vehicles, and
spanning diverse tasks such as vision-and-language navigation,  object searching,  target tracking,  and autonomous driving.  NavFoM
employs a unified architecture that processes multimodal navigation inputs from varying camera configurations and navigation horizons.
To  accommodate  diverse  camera  setups  and  temporal  horizons,  NavFoM  incorporates  identifier  tokens  that  embed  camera  view
information of embodiments and the temporal context of tasks. Furthermore, to meet the demands of real-world deployment, NavFoM
controls  all  observation  tokens  using  a  dynamically  adjusted  sampling  strategy  under  a  limited  token  length  budget.  Extensive
evaluations on seven public benchmarks demonstrate that our model achieves state-of-the-art or highly competitive performance across
different navigation tasks and embodiments without requiring task-specific fine-tuning. Additional real-world experiments further confirm
the strong generalizability and practical applicability of our approach.
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Core Task Landscape
This paper addresses: cross-embodiment and cross-task embodied navigation

A total of 50 papers were analyzed and organized into a taxonomy with 12 categories.

Taxonomy Overview
The research landscape has been organized into the following main categories:

Foundation Models and Generalist Agents for Embodied Navigation

Multi-Agent Navigation and Coordination

Task-Specific Navigation Methods and Representations

Surveys and Overviews of Embodied AI and Navigation

Complete Taxonomy Tree
cross-embodiment and cross-task embodied navigation Survey Taxonomy

Foundation Models and Generalist Agents for Embodied Navigation

Cross-Embodiment Foundation Models ★ (6 papers)

[0] Embodied Navigation Foundation Model (Anon et al., 2026) View paper

[1] Universal actions for enhanced embodied foundation models (Jin-Liang Zheng, 2025) View paper

[2] From multimodal llms to generalist embodied agents: Methods and lessons (Andrew Szot, 2025) View paper

[5] Robocat: A self-improving generalist agent for robotic manipulation (Bousmalis, 2023) View paper

[25] A Bio-Inspired Learning and Control Framework for Cross-Embodiment and Cross-Task Locomotion (Shafiee-Ashtiani, 2025) Vi
ew paper

[44] Pushing the Limits of Cross-Embodiment Learning for Manipulation and Navigation (Yang, 2024) View paper

Multi-Task and Generalist Navigation Agents (5 papers)

[17] NaviMaster: Learning a Unified Policy for GUI and Embodied Navigation Tasks (Luo Zhihao, 2025) View paper

[19] OctoNav: Towards Generalist Embodied Navigation (Gao Chen, 2025) View paper

[35] BLM: A Boundless Large Model for Cross-Space, Cross-Task, and Cross-Embodiment Learning (W Tan, 2025) View paper

[38] Uni-NaVid: A Video-based Vision-Language-Action Model for Unifying Embodied Navigation Tasks (Jiazhao Zhang, 2024) View
paper

LLM-Based Robotic Systems and Agentic Reasoning (3 papers)

[4] Large language models for multi-robot systems: A survey (Li Peihan, 2025) View paper

[14] Agentic LLM-based robotic systems for real-world applications: a review on their agenticness and ethics (Emmanuel K. Raptis,
2025) View paper

[24] OmniEAR: Benchmarking Agent Reasoning in Embodied Tasks (Wang Zi-xuan, 2025) View paper

Multi-Agent Navigation and Coordination

Multi-Agent Coordination with Communication and Collaboration (6 papers)

[3] Roboos: A hierarchical embodied framework for cross-embodiment and multi-agent collaboration (Tan Huajie, 2025) View paper

[7] Multi-agent embodied visual semantic navigation with scene prior knowledge (Liu Xinzhu, 2022) View paper

[8] Cooperative multi-agent learning for navigation via structured state abstraction (Mohamed K. Abdel-Aziz, 2024) View paper

[29] Coordinating multi-agent navigation by learning communication (Dalton Hildreth, 2019) View paper

[32] Heterogeneous Embodied Multi-Agent Collaboration (Xin-Zhu Liu, 2024) View paper
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[43] Embodied Multi-Agent Task Planning from Ambiguous Instruction (Xin-Zhu Liu, 2022) View paper

Decentralized Multi-Agent Navigation and Collision Avoidance (5 papers)

[9] Online control barrier functions for decentralized multi-agent navigation (Zhan Gao, 2023) View paper

[11] Learning control admissibility models with graph neural networks for multi-agent navigation (Yu, 2023) View paper

[21] Safe Multi-Agent Navigation Guided by Goal-Conditioned Safe Reinforcement Learning (Feng Meng, 2025) View paper

[26] Decentralized, unlabeled multi-agent navigation in obstacle-rich environments using graph neural networks (Xuebo Ji, 2021) V
iew paper

[39] Learning Distributed Safe Multi-Agent Navigation via Infinite-Horizon Optimal Graph Control  (Wang Fenglan,  2025)  View
paper

Learning-Based Multi-Agent Navigation Policies (7 papers)

[13] Learning team-based navigation: a review of deep reinforcement learning techniques for multi-agent pathfinding (Jaehoon
Chung, 2024) View paper

[23] ALAN: adaptive learning for multi-agent navigation (Julio Godoy, 2018) View paper

[27] Adaptive learning for multi-agent navigation (Julio Godoy, 2015) View paper

[40] Differentiable Learning of Scalable Multi-Agent Navigation Policies (Xiaohan Ye, 2023) View paper

[45] Learning Graph-Enhanced Commander-Executor for Multi-Agent Navigation (Yang Xin-yi, 2023) View paper

[47] MASP: Scalable GNN-based Planning for Multi-Agent Navigation (Yang Xin-yi, 2023) View paper

[50] Time-aware MADDPG with LSTM for multi-agent obstacle avoidance: a comparative study (Enyu Zhao, 2024) View paper

Environment Co-Optimization for Multi-Agent Navigation (4 papers)

[12] Co-Optimization of Environment and Policies for Decentralized Multi-Agent Navigation (Zhan Gao, 2024) View paper

[16] Constrained environment optimization for prioritized multi-agent navigation (Zhan Gao, 2023) View paper

[20] Environment optimization for multi-agent navigation (Gao, 2022) View paper

[36] Co-Optimizing Reconfigurable Environments and Policies for Decentralized Multi-Agent Navigation (Zhan Gao, 2025)  View
paper

Task-Specific Navigation Methods and Representations

Representation Learning and Perception for Navigation (4 papers)

[10] Entl: Embodied navigation trajectory learner (Klemen Kotar, 2023) View paper

[30] Analyzing Visual Representations in Embodied Navigation Tasks (Wijmans, 2022) View paper

[37] Offline Visual Representation Learning for Embodied Navigation (Yadav, 2022) View paper

[48] Learning to Align Multimodal Data for Static and Dynamic Tasks (Paul, 2022) View paper

Navigation Policy Learning and Task Decomposition (3 papers)

[31] Deep Learning-Powered Embodied Navigation in Simulated Environments (Zhu, 2024) View paper

[33] Learning Embodied AI Agents with Task Decomposition (Jia, 2023) View paper

[34] Hierarchical Auto-Organizing System for Open-Ended Multi-Agent Navigation (Zhao, 2024) View paper

Navigation Benchmarks and Evaluation Frameworks (3 papers)

[6] Embodied navigation with multi-modal information: A survey from tasks to methodology (Y. Z. Wu, 2024) View paper

[15] Unifying Modern AI with Robotics: Survey on MDPs with Diffusion and Foundation Models (Zhaofan Zhang, 2025) View paper

[28] NavSpace: How Navigation Agents Follow Spatial Intelligence Instructions (Yang HaoLin, 2025) View paper

Mapping and Spatial Perception Systems (1 papers)

[42] A Robust, Task-Agnostic and Fully-Scalable Voxel Mapping System for Large Scale Environments (Jinche La, 2024) View paper

Surveys and Overviews of Embodied AI and Navigation (4 papers)

[18] Multi-agent Embodied AI: Advances and Future Directions (Feng Zhaohan, 2025) View paper

[22] Embodied Multi-Agent Systems: Perception, Action, and Learning (H Liu, 2025) View paper

[46] Guest Editorial:  Special Issue on Embodied AI in Indoor Robotics: Bridging Perception, Interaction, and Autonomy (Yaran
Chen, 2025) View paper

[49] AIRSHIP: Empowering General-Purpose Intelligent Robots through Open-Source Embodied AI (HC Chou, 2025) View paper

Narrative
Core task:  cross-embodiment and cross-task embodied navigation.  The field addresses how agents with diverse physical  forms and
capabilities  can navigate and perform tasks across varied environments and objectives.  The taxonomy reveals  four main branches.
Foundation Models and Generalist Agents for Embodied Navigation explores unified architectures that leverage large-scale pretraining
and multimodal reasoning to handle multiple robot morphologies and task types, as seen in works like Universal Actions Embodied[1] and
Robocat Self-Improving Agent[5]. Multi-Agent Navigation and Coordination focuses on scenarios where multiple agents must navigate
shared  spaces,  often  requiring  collision  avoidance,  communication  protocols,  and  cooperative  strategies.  Task-Specific  Navigation
Methods  and  Representations  develops  specialized  techniques  for  particular  problem  settings,  such  as  visual  representations,
hierarchical planning, or instruction following. Finally, Surveys and Overviews of Embodied AI and Navigation provide broad perspectives
on the evolving landscape, synthesizing progress across these dimensions.

A central tension emerges between generalist foundation models that aim for broad transferability and specialized methods that optimize
for particular embodiments or tasks. Recent efforts like Multimodal LLMs Embodied Agents[2] and Bio-Inspired Cross-Embodiment[25]
push toward more flexible  policies  that  can adapt  across  robot  types,  while  works  such as  Cross-Embodiment  Limits[44]  critically
examine the boundaries of such transfer. Embodied Navigation Foundation[0] sits squarely within the Cross-Embodiment Foundation
Models  cluster,  emphasizing  scalable  pretraining  and  policy  adaptation  mechanisms  that  bridge  different  morphologies  and  task
specifications. Compared to Robocat Self-Improving Agent[5], which focuses on self-improvement through iterative data collection, and
Bio-Inspired  Cross-Embodiment[25],  which  draws  on  biological  principles  for  morphology-agnostic  control,  Embodied  Navigation
Foundation[0] appears to prioritize unified representations that facilitate zero-shot or few-shot generalization across diverse navigation
scenarios. This positioning reflects ongoing debates about whether cross-embodiment success depends more on architectural universality
or on richer inductive biases tailored to embodied reasoning.

Related Works in Same Category
The following 5 sibling papers share the same taxonomy leaf node with the original paper:

1. Universal actions for enhanced embodied foundation models
Authors: Jin-Liang Zheng, Jianxiong Li, Dongxiu Liu, Yi-nan Zheng, Zhihao Wang, et al. (10 authors total) | Year/Venue: 2025 | URL: Vie
w paper
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Abstract
â�¦ dling cross-task, cross-environment, and cross-embodiment â�¦ of behaviors for cross-embodiment control, making our 0.5B â�¦ as
those in manipulation and navigation, and from single-arm â�¦

Relationship Analysis
Both  papers  belong  to  the  Cross-Embodiment  Foundation  Models  category,  focusing  on  training  models  across  diverse  robot
morphologies  (arms,  quadrupeds,  drones,  wheeled  robots)  to  enable  shared  representations  and control  policies.  They  overlap  in
addressing cross-embodiment navigation and control  using vision-language models trained on large-scale heterogeneous data from
multiple  robot  platforms.  The  key  difference  is  that  the  original  paper  (NavFoM)  focuses  specifically  on  navigation  tasks  across
embodiments using temporal-viewpoint indicator tokens and trajectory prediction, while the candidate paper (UniAct) addresses general
embodied control by learning a universal action space through vector quantization to handle action heterogeneity across different
control interfaces and robot types.

2. From multimodal llms to generalist embodied agents: Methods and lessons
Authors: Andrew Szot, Bogdan Mazoure, Omar Attia, Aleksei Timofeev, Harsh Agrawal, et al. (9 authors total) |  Year/Venue: 2025 |
URL: View paper

Abstract
â�¦ varied domains through a multi-embodiment action tokenizer. â�¦ training policies on large multi-task datasets, illustrating the â�¦
We use datasets of simulated robot navigation in Habitat. We â�¦

Relationship Analysis
Both  papers  belong  to  the  Cross-Embodiment  Foundation  Models  category,  focusing  on  training  models  across  diverse  robot
morphologies  to  enable  shared representations and control  policies.  They overlap in  addressing cross-embodiment  navigation and
manipulation  tasks  using  vision-language  models  trained  on  large-scale  multi-embodiment  datasets  (NavFoM uses  8M navigation
samples  across  quadrupeds,  drones,  wheeled robots,  and vehicles;  GEA uses  2.2M trajectories  across  static  manipulators,  mobile
manipulators, and virtual agents). The key difference is that NavFoM specializes in navigation tasks with trajectory-based waypoint
prediction and temporal-viewpoint indicator tokens for multi-camera setups,  while GEA is a broader generalist  agent that extends
beyond navigation to include manipulation, video games, UI control, and planning tasks, using a multi-embodiment action tokenizer and
combining supervised learning with online reinforcement learning.

3. Robocat: A self-improving generalist agent for robotic manipulation
Authors: Bousmalis, Konstantinos, Konstantinos Bousmalis, Vezzani, Giulia, et al. (116 authors total) |  Year/Venue: 2023 |  URL:  View
paper

Abstract
The ability to leverage heterogeneous robotic experience from different robots and tasks to quickly master novel skills and embodiments
has the potential to transform robot learning. Inspired by recent advances in foundation models for vision and language, we propose a
multi-embodiment,  multi-task  generalist  agent  for  robotic  manipulation.  This  agent,  named  RoboCat,  is  a  visual  goal-conditioned
decision transformer capable of consuming action-labelled visual experience. This data spans a large r...

Relationship Analysis
Both  papers  belong  to  the  Cross-Embodiment  Foundation  Models  category,  focusing  on  training  models  across  diverse  robot
morphologies  to  enable  shared  representations  and  control  policies.  While  NavFoM addresses  cross-embodiment  navigation  tasks
(quadrupeds,  drones,  wheeled  robots,  vehicles)  using  vision-language  models  with  trajectory  prediction  for  navigation-specific
scenarios, RoboCat focuses on cross-embodiment robotic manipulation tasks (various robot arms with different DoF) using visual goal-
conditioning and self-improvement loops for pick-and-place and assembly behaviors. The key distinction is that NavFoM specializes in
navigation across different locomotion platforms, whereas RoboCat specializes in manipulation across different arm embodiments.

4. A Bio-Inspired Learning and Control Framework for Cross-Embodiment and Cross-Task Locomotion
Authors: Shafiee-Ashtiani, Milad | Year/Venue: 2025 • Infoscience (Ecole Polytechnique FÃ©dÃ©rale de Lausanne) | URL: View paper

Abstract
Animals  exhibit  remarkable  locomotion  skills  despite  significant  sensorimotor  delays  and  operating  in  uncertain  environments.
Moreover, mammals acquire these skills within minutes of birth. From the Cambrian explosion to the present day, vertebrate motor
control circuits have remained remarkably similar. This shared architecture is rooted in a modular and adaptable design, reflecting an
elegant system that enables the complexity of locomotion. At the same time, we are living in an exciting era f...

Relationship Analysis
Both  papers  belong  to  the  Cross-Embodiment  Foundation  Models  category,  focusing  on  models  trained  across  diverse  robot
morphologies. The original paper (NavFoM) presents a vision-language foundation model for cross-embodiment navigation tasks (VLN,
object search, tracking, autonomous driving) trained on 8 million samples using temporal-viewpoint indicator tokens and budget-aware
sampling. The candidate paper presents a bio-inspired learning framework using reinforcement learning with central pattern generators
(CPGs) for cross-embodiment locomotion control, emphasizing gait transitions and parkour skills rather than high-level navigation with
language instructions.

5. Pushing the Limits of Cross-Embodiment Learning for Manipulation and Navigation
Authors: Yang, Jonathan, Jonathan Yang, Catherine Glossop, Bhorkar, et al. (22 authors total) | Year/Venue: 2024 | URL: View paper

Abstract
Recent years in robotics and imitation learning have shown remarkable progress in training large-scale foundation models by leveraging
data across a multitude of embodiments. The success of such policies might lead us to wonder: just how diverse can the robots in the
training  set  be  while  still  facilitating  positive  transfer?  In  this  work,  we  study  this  question  in  the  context  of  heterogeneous
embodiments, examining how even seemingly very different domains, such as robotic navigation and manipu...

Relationship Analysis
Both papers belong to the Cross-Embodiment Foundation Models category, focusing on training unified models across diverse robot
morphologies for navigation and manipulation tasks. They overlap in addressing cross-embodiment generalization using foundation
model approaches with shared representations across quadrupeds, drones, wheeled robots, and manipulators. The key difference is that
the original paper (NavFoM) focuses exclusively on navigation tasks across embodiments using vision-language models with 8 million
navigation samples, while the candidate paper (Pushing the Limits) jointly trains on both navigation and manipulation data to study
heterogeneous cross-embodiment transfer, demonstrating that navigation data can improve manipulation performance and vice versa.
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Contributions Analysis
This paper presents 3 main contributions, each analyzed against relevant prior work:

Contribution 1: Cross-embodiment and cross-task Navigation Foundation Model (NavFoM)
Description:  The authors  propose NavFoM,  a  unified navigation  foundation model  trained on 8  million  samples  covering multiple
embodiments  (quadrupeds,  drones,  wheeled  robots,  vehicles)  and  diverse  navigation  tasks  (vision-and-language  navigation,  object
searching, target tracking, autonomous driving). The model uses a unified architecture that processes multimodal navigation inputs from
varying camera configurations and navigation horizons without requiring task-specific fine-tuning.

This contribution was assessed against 10 related papers from the literature. Papers with potential prior art are analyzed in detail with
textual evidence; others receive brief assessments.

1. Autonomous visual navigation for mobile robots: A systematic literature review
URL: View paper

Brief Assessment

Autonomous Visual Navigation[67] is a systematic literature review that surveys existing navigation approaches. It does not present a
unified foundation model trained on 8 million samples across multiple embodiments and tasks as proposed in the original paper.

2. Design of AI based Autonomous Navigation System Using Swarm Intelligence Techniques for Agriculture
Application
URL: View paper

Brief Assessment

Swarm  Intelligence  Agriculture[71]  focuses  on  multi-robot  coordination  using  swarm  intelligence  (PSO-ACO)  for  agricultural  field
navigation, not on building a unified foundation model across diverse embodiments and navigation tasks as proposed in the original
paper.

3. X-mobility: End-to-end generalizable navigation via world modeling
URL: View paper

Brief Assessment

X-Mobility World Modeling[66] focuses on world modeling architecture for navigation with cross-embodiment deployment, but does not
claim to be a unified foundation model trained on diverse navigation tasks (VLN, object search, tracking, autonomous driving) across
multiple embodiments as NavFoM does.

4. A Cross-Environment and Cross-Embodiment Path Planning Framework via a Conditional Diffusion Model
URL: View paper

Brief Assessment

Cross-Environment Path Planning[70] focuses on path planning for robotic manipulators using diffusion models for joint-space trajectory
generation, not vision-language navigation across diverse embodiments and tasks as in NavFoM.

5. Compass: Cross-embodiment mobility policy via residual rl and skill synthesis
URL: View paper

Brief Assessment

Compass Mobility Policy[65] focuses on cross-embodiment mobility through residual RL and skill synthesis for point-to-point navigation,
not on building a unified navigation foundation model across diverse navigation tasks (VLN, object search, tracking, autonomous driving)
as proposed in the original paper.

6.  Rethinking the embodied gap in vision-and-language navigation:  A holistic  study of  physical  and visual
disparities
URL: View paper

Brief Assessment

Embodied Gap Study[63] focuses on evaluating existing VLN methods across different robot embodiments in physically realistic settings,
rather than proposing a unified navigation foundation model trained on diverse tasks and embodiments like NavFoM.

7. Antcar: simple route following task with ants-inspired vision and neural model
URL: View paper

Brief Assessment

Antcar Ants-Inspired Vision[68] focuses on a biologically-inspired visual navigation system for route following using ant-inspired vision
and mushroom bodies neural models. This is fundamentally different from NavFoM's cross-embodiment, cross-task foundation model
trained on 8 million samples across multiple robot types and diverse navigation tasks.

8. Pushing the Limits of Cross-Embodiment Learning for Manipulation and Navigation
URL: View paper

Brief Assessment

Cross-Embodiment Limits[44] focuses on heterogeneous cross-embodiment learning combining manipulation and navigation tasks, while
NavFoM specifically addresses navigation-only tasks across multiple embodiments with a unified architecture for diverse navigation
scenarios (VLN, object search, tracking, autonomous driving).

9. Scaling cross-embodied learning: One policy for manipulation, navigation, locomotion and aviation
URL: View paper

Brief Assessment

Scaling Cross-Embodied Learning[64] focuses on a unified policy for manipulation, navigation, locomotion and aviation using transformer
architecture,  while  the  original  paper  specifically  addresses  navigation  tasks  with  vision-language models.  The  candidate  does  not
challenge  the  novelty  of  NavFoM's  navigation-specific  foundation  model  approach  with  identifier  tokens  and  temporal  sampling
strategies.

10. X-Nav: Learning End-to-End Cross-Embodiment Navigation for Mobile Robots
URL: View paper

Brief Assessment
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X-Nav Cross-Embodiment[69]  focuses  on cross-embodiment  transfer  for  low-level  control  in  wheeled and quadrupedal  robots  using
reinforcement learning, not on a unified foundation model spanning diverse navigation tasks (VLN, object search, tracking, autonomous
driving) across multiple embodiments (quadrupeds, drones, wheeled robots, vehicles) as proposed in the original paper.

Contribution 2: Temporal-Viewpoint Indicator (TVI) tokens
Description: The authors introduce TVI tokens as a mechanism to organize visual tokens by encoding both viewpoint (camera angle) and
temporal information. These tokens enable flexible processing of arbitrary camera arrangements and support unified training across
image QA, video QA, and navigation tasks with different camera configurations.

This contribution was assessed against 10 related papers from the literature. Papers with potential prior art are analyzed in detail with
textual evidence; others receive brief assessments.

1. Simultaneous multi-view camera pose estimation and object tracking with squared planar markers
URL: View paper

Brief Assessment

Multi-View Pose Tracking[56] focuses on simultaneous camera pose estimation and object tracking using planar markers in multi-camera
setups. It does not address encoding temporal and viewpoint information for organizing visual tokens in vision-language navigation tasks
or foundation models.

2. Active SLAM With Dynamic Viewpoint Optimization for Robust Visual Navigation
URL: View paper

Brief Assessment

Active SLAM Viewpoint[57] focuses on SLAM-based viewpoint optimization for robotic navigation using feature maps and keyframes, not
on organizing visual tokens with temporal-viewpoint encoding for multi-task vision-language models.

3. NaviFormer: A Spatio-Temporal Context-Aware Transformer for Object Navigation
URL: View paper

Brief Assessment

NaviFormer Transformer Navigation[55] focuses on encoding spatial layouts and temporal pose trajectories for object navigation in static
environments,  not  on organizing multi-view camera configurations with temporal  information for diverse navigation tasks as in the
original paper's TVI tokens.

4. Real-time vision-aided localization and navigation based on three-view geometry
URL: View paper

Brief Assessment

Vision-Aided  Localization[62]  focuses  on  three-view  geometry  constraints  for  camera  localization  using  epipolar  constraints  and
translation vectors, not on organizing visual tokens with temporal-viewpoint embeddings for multi-task navigation training as in the
original paper.

5. Spatiotemporal Contrastive Learning for Cross-View Video Localization in Unstructured Off-road Terrains
URL: View paper

Brief Assessment

Spatiotemporal Contrastive Learning[59] focuses on cross-view localization between ground and aerial imagery in off-road environments,
not  on  organizing  multi-camera  visual  tokens  for  embodied  navigation  tasks.  The  technical  approaches  and  problem domains  are
fundamentally different.

6. Henet: Hybrid encoding for end-to-end multi-task 3d perception from multi-view cameras
URL: View paper

Brief Assessment

Henet Hybrid Encoding[54] focuses on multi-task 3D perception from multi-view cameras in autonomous driving, using hybrid image
encoders for different temporal frames. While it processes multi-view camera data, it does not introduce viewpoint-temporal indicator
tokens for organizing visual tokens across arbitrary camera configurations and navigation tasks as described in the original contribution.

7. Virtual video camera: Image-based viewpoint navigation through space and time
URL: View paper

Brief Assessment

Virtual  Video  Camera[61]  focuses  on  image-based  rendering  for  view  interpolation  in  captured  video  footage,  not  on  encoding
mechanisms for multi-view visual navigation in embodied AI systems.

8. Learning View-invariant and Novel Spatio-temporal Features Under Uncertainty from Video
URL: View paper

Brief Assessment

View-Invariant Spatiotemporal Features[60] focuses on learning view-invariant representations for action recognition and rPPG health
sensing, not on encoding camera viewpoint and temporal information through specialized tokens for multi-view navigation tasks.

9. Beings: Bayesian embodied image-goal navigation with gaussian splatting
URL: View paper

Brief Assessment

Beings Gaussian Splatting[53] focuses on Bayesian image-goal navigation using 3D Gaussian splatting for scene representation, not on
encoding camera viewpoint and temporal information for multi-view visual navigation tasks.

10. Learning multi-view camera relocalization with graph neural networks
URL: View paper

Brief Assessment

Multi-View Camera Relocalization[58] focuses on camera pose estimation using graph neural networks for multi-view sequences, not on
organizing  visual  tokens  with  temporal-viewpoint  identifiers  for  navigation  tasks  across  different  embodiments  and  camera
configurations.
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Contribution 3: Budget-Aware Temporal Sampling (BATS) strategy
Description: The authors propose BATS, a token sampling strategy that dynamically samples navigation history tokens based on an
exponential  forgetting curve while  respecting a fixed token budget.  This  approach balances navigation performance with inference
efficiency and adapts to varying numbers of cameras, addressing practical deployment constraints.

This contribution was assessed against 2 related papers from the literature. Papers with potential prior art are analyzed in detail with
textual evidence; others receive brief assessments.

1. Learning Adaptive and Temporally Causal Video Tokenization in a 1D Latent Space
URL: View paper

Brief Assessment

Adaptive  Video  Tokenization[51]  focuses  on  video  reconstruction  and  generation  tasks  with  token  allocation  for  visual  content
compression, not navigation history sampling for embodied AI agents under deployment constraints.

2. Rl of thoughts: Navigating llm reasoning with inference-time reinforcement learning
URL: View paper

Brief Assessment

RL of Thoughts[52] focuses on training a lightweight navigator model using reinforcement learning to dynamically select logic blocks for
LLM reasoning tasks, not on temporal sampling strategies for navigation history under token budget constraints in embodied navigation.

Appendix: Text Similarity Detection
Textual similarity detection checked 26 papers and found 1 similarity segment(s) across 1 paper(s).

The following 1 paper(s) were detected to have high textual similarity with the original paper. These may represent different versions of
the same work, duplicate submissions, or papers with substantial  textual overlap. Readers are advised to verify these relationships
independently.

1. Rethinking the embodied gap in vision-and-language navigation: A holistic study of physical and
visual disparities
Detected in: Contribution: contribution_1

⚠ Note: This paper shows substantial textual similarity with the original paper. It may be a different version, a duplicate submission, or
contain significant overlapping content. Please review carefully to determine the nature of the relationship.
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